If it's not what You are looking for type in the equation solver your own equation and let us solve it.
490^2=4x^2+2(4x+3x)
We move all terms to the left:
490^2-(4x^2+2(4x+3x))=0
We add all the numbers together, and all the variables
-(4x^2+2(+7x))+490^2=0
We add all the numbers together, and all the variables
-(4x^2+2(+7x))+240100=0
We calculate terms in parentheses: -(4x^2+2(+7x)), so:We get rid of parentheses
4x^2+2(+7x)
We multiply parentheses
4x^2+14x
Back to the equation:
-(4x^2+14x)
-4x^2-14x+240100=0
a = -4; b = -14; c = +240100;
Δ = b2-4ac
Δ = -142-4·(-4)·240100
Δ = 3841796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3841796}=\sqrt{196*19601}=\sqrt{196}*\sqrt{19601}=14\sqrt{19601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{19601}}{2*-4}=\frac{14-14\sqrt{19601}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{19601}}{2*-4}=\frac{14+14\sqrt{19601}}{-8} $
| 10=12y/5 | | 4*x=256 | | 5a^2-9a-1=0 | | b^2+40b-500=0 | | 4-2t=12 | | 9(2x-3)-2=5(2x-1) | | 3y^2-36y+44=0 | | 5(3)+4=x | | 7x-3=2x-38 | | 5(-3)+4=x | | 8x-x-11=9 | | 4(-2)-2(-1)-6(3)=x | | 3a+18=8 | | 7c-2=9 | | 40+(65x–55)=30–(45x–20)+10 | | F(x)=-8+1 | | x=x+4+x^2-16+2/3x+5 | | x^2+98-23=548/4 | | 3n-2=16 | | 641=x-365 | | 33a^2+18a+32=0 | | y=8E-05(0.1160) | | 2x-5=60-3x | | 2x+15=60-x | | 3x+(2x-5)=180 | | 3x-5(2x-8)=10 | | 4-(3-2x)=3(x-1)+2 | | a^2+24a=-80 | | 5(y+2)=+18-(1-3y) | | 5(y+2)=+8-(1-3y) | | 41x-2x=7x+5 | | x-1/2+2=2x-2/3 |